
Internet Resource Discovery Services

Peter B. Danzig, Katia Obraczka and Shih-Hao Li

Computer Science Department

University of Southern California

Los Angeles, California 90089-0781

danzig@usc.edu 213-740-4780

Introduction

The exponentially growing global Internet is a virtual in�nite fountain of information, yet it can seem like an

information labyrinth [22] when you try to �nd any speci�c fact.

A few years ago a researcher starting a new research project probably would have paid for a bibliographic search,

contacted his fellow researchers, and leafed through conference proceedings and university technical report lists.

Today, the Internet has the potential of being the researcher's main information source, however, the Internet's size

and complexity is a considerable obstacle.

Recently, a number of tools have been developed to assist users in �nding information of interest. These resource

discovery tools specialize in browsing, searching, and organizing information distributed throughout the Internet.

Browsing tools allow users to navigate through the available information space, and �nd information of interest

during this navigation process. Query-based search tools automatically locate relevant data for the user based on

information about the user's interest. Independent of the approach used, discovery services can also provide users

with the ability to organize information once found, so that in the future they can refer to it without having to repeat

the entire discovery process.

This paper presents an overview of resource discovery services currently available on the Internet. First, we survey

a number of existing Internet discovery services. Then, we present a taxonomy of design decisions and characteristics

of tools for the Internet resource discovery problem [30].

The Wide Area Information Server

WAIS, the Wide Area Information Server project [13, 12] resulted from the combined e�ort of four companies with

complementary interests in the information discovery and retrieval problem. One of the project's primary goals is to

provide users with a uniform, easy-to-use, location-transparent mechanism to access information.

WAIS is a full text information retrieval architecture whose clients and servers communicate through an extension

of the Z39-50 protocol standard [14, 25]. One server is distinguished as the directory of services. Figure 1 shows a

schematic view of the WAIS architecture.

The WAIS client translates user queries into the WAIS protocol, and can query the WAIS directory of servers

for relevant servers. The request is then transmitted to an appropriate set of servers. WAIS servers keep complete

inverted indices on the contents of documents they store and execute full-text searches on them. In response to a

query, a WAIS server returns a list of relevant object descriptors. These descriptors correspond to documents that

contain words and phrases speci�ed in the user query. The WAIS client displays the results of the query to the user

and retrieves the selected documents from the corresponding servers. WAIS clients support relevance feedback to

help users re�ne their queries.

Originally, users were supposed to keep track of the availableWAIS servers by storing their addresses, a description

1



Figure 1: The WAIS Architecture.

of their contents, and if applicable, their accessing costs. However, as participating servers proliferate, it became

unreasonable to expect that every user would keep track of all the available servers. A directory of servers service

was made available. This yellow page service resides in a well-known address and is queried the same way as the

regular WAIS servers. Instead of reference to documents, it replies with references to participating WAIS servers.

When a new information provider wants to join WAIS, it must submit its location, description, and other relevant

information to the directory server. Currently, there are 285 servers registered with the WAIS directory of services.

The WAIS directory of servers's database is replicated in other servers and has its primary copy stored on host

think.com.

An example WAIS discovery session using the X WAIS client is presented in Figure 2. The query is �rst submitted

to the directory of services which responds with descriptors of pertinent servers. The user can then select servers

from this set and submit the query to them. In this example, two servers are selected and queried. They return

40 di�erent document descriptors. By looking at their descriptions, the user can identify relevant documents to be

retrieved. If the user wishes to re�ne the search, one or more of the returned documents can be selected and placed

in the Similar to: box. When the query is re-run, the results are updated to include documents similar to the

selected ones. Similarity is ranked in terms of number of common words.

Archie

Archie [9] speci�cally addresses the �le discovery and retrieval problem in large internetworks. Archie servers cen-

tralize indexing information on �le name data distributed throughout Internet archive sites.

The current archie service makes available two databases. One of them, the �lenames database indexes names

of �les available from hundreds of FTP sites

1

. Those entries are automatically updated by archie. Users can query

1

FTP is the Internet File Transfer Protocol, which is used to retrieve �les stored on Internet hosts. Anonymous FTP is is a special

FTP session, which does not require the user to have an account on the FTP site. Anonymous FTP is a widely used method to support

distribution of public domain software and documents.

2



Figure 2: An Example WAIS Discovery Session.

this database for �le names that match speci�ed patterns, a complete list of the FTP archive sites, or a list of the

�les available from speci�c sites.

The other database, the whatis database, contains the names and descriptions of software packages, documents,

and other information available on the Internet. Entries in the whatis database are text strings, consisting of

keywords and the associated descriptions. Users perform case-insensitive text string searches that are applied to

both the keywords and the corresponding descriptions. Currently, the whatis database is manually maintained. That

is, information is gathered from secondary sources, such as Usenet postings, and author's e-mail submission, and

entered into the database by hand.

The archie architecture is presented in Figure 3. The data gathering (DGC) and maintenance (DMC) compo-

nents maintain the �lenames database, while the whatis database is maintained manually. Archie clients access both

databases through the user access component (UAC). The data gathering component relies on FTP site adminis-

trators to �nd out about new FTP archives. Every time a new FTP archive is reported, an entry corresponding to

the the new site is added to the �le that lists all known FTP sites, the site descriptions �le. Periodically, the DGC

connects to each known FTP site, and fetches a recursive listing of its available contents. This information is kept

on the archie server in the raw listing �les, and is processed by the DMC, which converts the raw site listings into a

format that can be added to the �lenames database.

The user access component allows users on the Internet to access and query the archie servers. Currently, there are

three possible access methods: the telnet interface, the e-mail interface, and the Prospero [18, 17, 16, 19] interface.

The telnet interface to archie consists of connecting to an archie server through the telnet command, and then

submitting queries. Users can then submit queries to either the whatis and �lenames databases. The telnet interface

has proven to be very resource consuming, since each telnet session requires a signi�cant amount of server resources.

As an alternative, the Prospero interface has been recently made available to users. It consists of having a Prospero

server as a front-end to the archie server. The Prospero server allows Prospero users to access archie's databases

without the need to log onto the archie server directly. The Prospero interface has also caused the development

of archie clients using the Prospero protocol. Because of Prospero's UDP based protocol and the Prospero server

scheduling and caching techniques, the Prospero interface to archie is less resource consuming and presents higher

3



Figure 3: The Archie Architecture.

throughput than the telnet access. Through the e-mail interface, users can submit a query to archie by sending an

e-mail message to an archie server, which sends a message back to the user with the query results.

There are currently nine archie servers on the Internet, �ve of which provide general access to the whole Internet

community, and the other four serve communities with limited Internet access. Consistency among the archie servers

is maintained by having them copy the site listing information kept at the main archie server in Montreal, Canada.

According to [9], the tra�c generated by the update mechanism and user queries to the main archie server is

responsible for approximately 50% of all Montreal-bound Internet tra�c. This could be avoided by distributing the

work of polling the participating sites among the various archie servers, and then have them execute a consistency

maintenance protocol among themselves.

Archie's developers have described it as a low-tech solution to the resource discovery and information retrieval

problem. However, archie's simplicity and use of existing mechanisms have been the key to its success. After a little

more than a year in service, with over 1,000 registered FTP archive sites, making available 2,100,000 �les and 3,500

di�erent software packages, archie is accessed from 47 di�erent countries, reporting 3,500 search queries per day at

the Canada server.

Prospero

The Prospero File System [18, 17, 16, 19] is a tool for organizing distributed information. Prospero lets users build

customized views, or virtual systems, of directories distributed throughout the Internet.

The Prospero name space forms a generalized directed graph, where intermediate nodes are directories, leaves

are �les, and edges are Prospero links. Just like traditional distributed �le systems, subtrees of the Prospero name

space can be stored by di�erent Prospero servers. A user's name space corresponds to the subgraph starting at a

particular node, which is the root of the user's name space.

4



Users organize their name space hierarchically by building views, which are essentially directories composed from

various sources including the user's own views and imported views from other users. These directories may reside

in di�erent Prospero servers. One special type of view is an index, which returns a directory of objects that satisfy

some query. This allows Prospero users to access other search engines. For example, the Prospero-archie interface

lets users build views containing directories with objects resulting from archie queries.

Users can �nd information by navigating through available views. The Prospero client provides users with

navigational tools that are analogous to the ones provided by traditional �le systems. One command allows a user

to change his current virtual directory to the one speci�ed in the command. Another command displays the name of

the current virtual directory and describes its physical location. Users can also list the contents of a virtual directory.

A sample session using Prospero is shown in Figure 4. This particular Prospero session illustrates the Prospero-

archie interface. The user starts by using the vfsetup command which places the user at a speci�c point in

the Prospero name space, in this case, the guest virtual system. Then through vcd, vwd, and vls the user can

change his current virtual directory, display the name of the current virtual directory, and list its contents, respec-

tively. To submit an archie request to �nd all �le names that match the string wais, the user changes directory to

/databases/archie/regex/wais, and lists the results by using the vls command.

When a user �nds an interesting object, which may be a simple �le or a view, the user can include the object

in his view by linking to it. The Prospero client provides commands to add and delete links from the current node

in the user's name space to a target node or leaf. A Prospero link speci�es the name of the host where the object

is stored and the local name of the object on that host. If the target of the link is a directory, the link provides

information to resolve a name in that directory by querying the corresponding server. For �les, the associated links

contact the appropriate server to provide access mode information. Currently, Prospero supports Sun's Network

File System, the Andrew File System, and anonymous FTP. A link also includes information such as link type, and

�lters associated with the link. Special links allow the contents of the target directory to be virtually included in

the physical directory containing the link. By associating �lters with links, users can build customized views from

existing ones. A �lter customizes the target view by reorganizing or extracting parts of it.

In summary, listing a Prospero view requires a computation distributed across all of the nodes reachable by

transitive closure of all of the view's links, indices, and �lters.

Users advertise information by registering their virtual system with the Prospero server administrator. The

administrator creates a link to the new virtual system in the master view of virtual systems, where other users can

see, navigate, and if accessible, link to portions of it.

Currently, there are close to 50 Prospero servers. Most users from more than 10,000 systems in 30 di�erent

countries run as Prospero clients only. They either run the Prospero interface to archie or the full Prospero client.

Gopher

The Internet Gopher [1] allows users to search and browse distributed information. Gopher organizes information

into a hierarchy

2

, where intermediate nodes are directories or indices, and leaf nodes are documents.

The Gopher architecture is composed of clients and servers communicating through the Gopher protocol, which

is implemented on top of TCP-IP. Figure 5 shows the Gopher architecture.

The root of Gopher's hierarchy is stored on host rawBits.micro.umn.edu at the University of Minnesota. This

is the default directory retrieved by the Gopher client when �rst invoked. Gopher clients can also be con�gured

with other entry points into the Gopher hierarchy. The Gopher root server knows about all top-level services, so

that it can advertise their existence to users. In the Gopher architecture, there is essentially one top-level server

per participating organization, such as a university campus, a private corporate institution, or a government agency.

Lower-level servers may be linked to the corresponding top-level server, so that once users �nd the appropriate top-

level server, they can navigate through the hierarchy by following the links to the lower-level servers. For example,

university campuses running Gopher servers may register a central top-level server with the Gopher root server. Each

university's central Gopher server may have links to existing departmental servers, which in turn may have links to

2

Actually, the Gopher information space is a generalized directed graph, since it allows cycles.

5



Figure 4: A Sample Prospero Session (Some of the server and path names are truncated).

6



Figure 5: The Internet Gopher Architecture.

lower-level servers.

Gopher objects are identi�ed by their type, user-visible name, server's host name and port number, and the

object's absolute path name within the server's �le system. The user selects an object based on its user-visible name,

and the Gopher client retrieves it by constructing a handle from the server's host name and port number, and the

object's path name. Users can then navigate through the available information base containing full-text document

objects, which are stored as �les in the corresponding servers, and directory objects that may be distributed across

multiple servers. Full-text search operations can also be performed. Gopher's search servers maintain full-text

inverted indices of subsets of the documents stored in a Gopher server. Search servers can be con�gured to index

more than one server. For instance, there is an Internet Request for Comments (RFC) full-text search server that

indexes all the existing RFC's, and executes keyword searches on their contents. A full-text search server returns to

the client handles to documents that match a Boolean search pattern. Gopher clients can also retrieve objects from

WAIS, archie, and FTP servers.

Figure 6 illustrates a sample Gopher session. Starting at the root directory, the user traverses the Gopher

information space by selecting interesting directories, such as Libraries/ and Library of Congress Records/,

or executing full-text searches on indices like Search Library of Congress Records from 12-91 to Present

<?>.

The World-Wide Web

The World-Wide Web, or WWW [3, 2] merges the techniques of information discovery and hypertext. WWW

organizes data into a distributed hypertext, where nodes are either full-text objects, directory objects called cover

pages, or indices. WWW also supports full-text searches over documents stored at a particular WWW server.

The WWW architecture is also based on the client-server model. The WWW client provides users with a

hypertext-like browsing interface. Besides its native HyperText Transfer Protocol, WWW clients understand FTP

7



Figure 6: A Sample Gopher Session.

8



and the Network News Transfer Protocol, NNTP [11]. FTP is used for accessing �le archives on the Internet, where

�le directories are browsed as hypertext objects. NNTP allows access to Internet news groups and news articles.

News articles may contain references to other articles or news groups, which are represented as hypertext links.

HTTP allows document retrieval and full-text search operations. HTTP runs on top of TCP and maps each

request to a TCP connection. HTTP objects are identi�ed by the HTTP protocol type, the corresponding server's

name, and the path name to the �le where the objects' contents reside. Parts of documents can also be speci�ed. If

a search operation is requested, the HTTP object identi�er carries the set of speci�ed keywords, instead of a path

name. Future implementations of HTTP protocol will include data format negotiation between client and server.

Currently, only plain text and simple hypertext formats (HyperText Markup Language- HTML) are implemented.

Information accessible through WWW can be seen through three discovery trees. One tree is a classi�cation

by subject. An entry in the WWW root directory links to the current subject classi�cation tree. Currently this

classi�cation includes topics such as aeronautics, astronomy, biological sciences, computer sciences, and humanities.

This information is spread across all kinds of servers, including WAIS, Gopher, and WWW. Because WWW was

created for the high-energy physics community, a special entry in the root directory links to a cover page with the

existing HTTP servers specialized in the subject. As they become available, indices to other disciplines will be added.

The other WWW discovery tree is a classi�cation by server type. The cover page corresponding to this classi�cation

lists all the servers available through WWW. This includes entries for WAIS, Gopher, NNTP and WWW servers.

There is even an entry for anonymous FTP sites that are searched through archie. The third tree is a classi�cation

by organization and is not very populated.

The WWW discovery trees correspond to the di�erent ways information is organized and can be discovered.

Discovery sessions involve users starting on their home cover page, following a link to an index, then executing a

search, and following the resulting links. As users �nd interesting information, they build their personalized web

by linking to nodes in the global web. Currently, the default cover page, which resides on host info.cern.ch and

represents the root of the WWW information space, is the one retrieved by the WWW client when �rst invoked.

However, users can customize their home cover page so that they can start anywhere in the WWW information

space. Figure 7 presents an example of a WWW session.

Making information available through WWW may involve a similar discovery task. The information publisher

must try to �nd the appropriate cover page that should reference the new data. Then the publisher should contact

the person responsible for that cover page so that a link to the new data is added. Another possibility is for the

publisher to run a new server. This last option requires that the new server's administrator contacts the WWW

administrators to add the new server to the list of existing servers.

In summary, WWW is a hypertext-like tool for organizing and accessing information available Internet-wide.

Using its browsing interface, users can navigate through the di�erent classi�cation trees to �nd and publish new

information.

Currently, besides WAIS and Gopher servers, there are about 24 WWW servers accessible to WWW clients. The

WWW server on info.cern.ch has logged access from approximately 6,000 di�erent hosts that use their own WWW

clients or connect to the publically available client.

Resource Discovery at the University of Colorado

The Resource Discovery project at the University of Colorado-Boulder [29, 27] is best known for net�nd, but has also

investigated various issues in the resource discovery arena. Net�nd [26] is a white pages directory tool which given

an Internet user's name and organization, tries to locate available information about the user. A successful net�nd

query, like the one shown in Figure 8 returns information such as the user's e-mail address, and telephone number.

Net�nd builds its indexing database, called the seed database, based on data scattered across multiple existing

sources, such as network news messages, the DomainName System (DNS), the SimpleMail Transfer Protocol, and the

�nger utility. The seed database keeps organization names, city names, and corresponding host names gathered from

news message headers over time. Based on the organization names and city names provided to net�nd, matching

host names are selected from the seed database. DNS is then used to locate authoritative name servers for the

domains to which the selected hosts belong. Each of the name servers found are queried using SMTP to try to �nd

9



Figure 7: A Sample WWW Session.

10



mail forwarding information about the speci�ed user. If found, the corresponding hosts are probed using �nger. To

improve net�nd's response time and increase its resilency to host and network failures, up to ten lightweight threads

may be used to allow sets of DNS, SMTP, and �nger query sequences to be executed in parallel.

Other resource discovery related projects under development at the University of Colorado include a probabilistic

yellow page tool [28], a network visualization tool [29], which focuses on discovering information about networks,

such as topology, congestion, routing, and protocol usage, and a global electronic mail study [31], which investigates

the organization of human social networks by analyzing mail logs collected from di�erent Internet sites.

Indie

Distributed Indexing, or Indie for short [5, 6], is a distributed information discovery and retrieval architecture.

Indie consists of a replicated directory of services and a collection of broker databases that automatically cluster

references to related information by indexing their own data, and data stored in other brokers, databases, and other

discovery tools. This clustering of indexing information in Indie brokers makes e�cient exhaustive search possible.

Furthermore, because it was built atop of the Distributed Hypertext (DHT) system data model and communication

protocol [20], Indie inherits the organizational capabilities of hypertext systems. Thus users can also bene�t from

Indie's ability to organize information of interest, so that it can be easily found next time the user needs it.

An Indie broker stores descriptors of objects that are relevant to the topic the broker specializes in. These object

descriptors are extracted from other Indie brokers and primary data sources that the broker indexes. An object

descriptor contains an arbitrary number of attribute-value pairs describing the object. Examples of attributes that

constitute an object descriptor include bibliographic information about the object, such as the author's name, the

document's title and publication date, an abstract and keywords describing the document's contents. The object

descriptor also includes technical data about the object, such as the object type, the object identi�er and timestamp

assigned to each object by the database that created it, and some attributes used by Indie's consistency maintenance

mechanism. The object descriptors need not include the object itself. This lets a service advertise an object but

retain control of access to it.

A generator object describes an Indie broker. The generator consists of a textual abstract, a boolean expression

over a set of bibliographic �elds, which we call the generator rule, and �elds such as the broker's location, the size of

its database, and the object identi�er corresponding to the generator object. The name generator rule expresses the

idea that a broker's database is generated and periodically updated by evaluating the rule over a number of other

brokers and primary data sources.

To become visible to users and other brokers, all brokers register their generator object with Indie's directory

of services. A broker can register itself with any replica of the directory of services. As part of the registration

procedure, the selected replica returns a list of other generator objects pertinent to the new broker. The broker

stores this list in its registration table, and refers to it when choosing the set of databases it will index. The directory

of services replica also reports changes to the broker's registration table, as new brokers join in or participating

brokers cease to exist. The broker administrator, via the administrator's tool, selects brokers to index from its

registration table. From time to time, the administrator refers to the registration table and decides whether or not

to index new brokers.

Brokers that are indexed by others store the indexing brokers' generator objects in their trigger table. The name

trigger table is an analogy with active databases [33] in which speci�c rules are triggered and evaluated when the

database changes in particular ways. When one broker registers its generator object with another broker, the indexed

broker executes the generator rule and reliably forwards the retrieved set of object descriptors to the indexing broker.

Afterwards, adding or deleting objects from the indexed broker's database may trigger the evaluation of generator

rules in its trigger table, and some of these rules may forward these changes to the corresponding indexing brokers.

The directory of services is just a specialized broker. When a broker registers itself with a replica of the directory

of services, the broker's generator object is stored in that replica's trigger table. Only the updates to the directory

of services that trigger this rule are forwarded to the broker.

Non-Indie servers attach to Indie through a gateway broker. Indie provides a gateway library consisting of a set

of routines which non-Indie servers can call to communicate with their gateway broker. The gateway broker itself

11



Exiting Netf

Figure 8: A Sample Net�nd Session.

12



Figure 9: Indie Operation.

is just a normal Indie broker modi�ed as necessary to communicate with non-Indie servers. It manages a trigger

table, registration table, and the interface to the directory of servers. A non-Indie server can e�ciently attach itself

to Indie by making appropriate calls to the gateway library. Otherwise, the gateway broker must communicate with

the non-Indie server in its native protocol, and poll for updates by periodically extracting indexing information from

the server.

Figure 9 illustrates an example indexing con�guration and its operation. Suppose that a user wants to �nd all

recent technical publications on Distributed Operating Systems. The corresponding user query is submitted to a

replica of the directory of services, which evaluates the query against its generator object database. The result of

this computation is a list of brokers whose descriptions are pertinent to the user query's focus. In this example, the

directory of services could return a reference to the Operating Systems broker, and the Distributed Systems broker.

The user interface ranks the list of target brokers according to their interest. This ranking procedure could be based

for instance on counting the number of keyword matches in the broker descriptor. In this case, the user interface

could send the query to both brokers, whom after evaluating the user query on their indexing information database,

return a list of appropriate object descriptors. Based on this information, the user may choose to retrieve a copy of

one or more interesting articles from one or more full text retrieval systems. For instance, the user decides to retrieve

a copy of an interesting report from UCLA. The user interface contacts the corresponding gateway to retrieve the

selected object. Alternatively, the user could have chosen to add a link from any node in her information space to

the UCLA technical report, so that she could �nd it and refer to it in the future without having to repeat the entire

discovery process.

Indie addresses database consistency and recovery with a timestamped augmented ooding algorithm which

also permits convenient recovery from network partition, operating system crashes, and media failure of the broker's

database. Indie's timestamp based consistency mechanism works as follows. All trigger table entries, and registration

table entries are timestamped. When an object is added to or deleted from a broker, the change causes the broker

to evaluate certain rules stored in its trigger table against updates with timestamps younger than the trigger table

entry. The broker forwards the appropriate changes to each of its a�ected peers, that is, each registered indexing

broker corresponding to the triggered generator rules, and advances the trigger table timestamps to the timestamp of

the latest update. It then transmits this timestamp to each of the a�ected peers, which record it in the appropriate

13



registration table entry. When the indexed broker cannot establish communication with one peer, it marks the

trigger table entry as out of date. Timestamps of rules neither triggered nor marked as out of date are advanced to

the current time. Finally, peers occasionally poll one another in an attempt to maintain consistency. The timestamp

mechanism permits convenient recovery from network partition, operating system crashes, and media failure of the

broker's database.

Lazily consistent broker replication is a side e�ect of Indie's indexing mechanism. To replicate a broker, we create

a new broker to serve as the replica, assign the replica the same generator rule as the broker to be replicated, and

have the replica index the broker or some number of replicas of it. Since the replica shares the same generator rule

as the primary copy, it �lls with the same data. Indie's update and recovery algorithm guarantees that all replicas

eventually learn of the update.

Replication in the context of the directory of services considers all replicas to be equal. This means that there

is no primary copy of the directory of servers. Instead, clients register or unregister themselves with the replica of

their choice. All replicas participate in a ooding based consistency maintenance mechanism to keep their databases

consistent.

Indie's �rst implementation phase has been completed. Currently, the prototype consisting of indie brokers, a

centralized directory of services and gateways to FTP archives is running on the USC Network and Distributed

Systems Laboratory. Indie's consistency maintenance and replication mechanisms are now being implemented.

Other Resource Discovery Research Initiatives

Besides the services described above, other discovery tools include X.500, the Knowbot Information Service, Alex,

Semantic File Systems, and Nomenclator.

X.500 [32] is the result of the CCITT (Consultative Committee for Telephony and Telegraphy) and ISO (Inter-

national Standards Organization) standardization e�orts in the �eld of directory of services. X.500's name space is

hierarchically organized and distributed among X.500 servers. Administrative authority over portions of the global

name space is delegated to di�erent autonomous organizations, who can in turn transfer authority over portions of

their assigned subtrees. Unlike the Domain Name System [15], X.500 accepts attribute-based queries. The origi-

nal X.500 standard speci�cation does not explicitly mention support for replication. However, QUIPU [24], one of

X.500's current implementations, uses a simple replication mechanism based on designated slave and master servers.

The Digital Library System, or DLS [10] is an open architecture whose goal is to integrate access to all existing as

well as future information sources available on the Internet. Knowbots, the abbreviation for Knowledge Robots, are

active components of the DLS. A Knowbot is de�ned as an active intelligent program capable of exchanging messages

with other Knowbots, moving and replicating itself around the system, searching and manipulating objects. Based

on the Knowbot concept, the Knowbot Information System (KIS) [8] understands a number of directory services,

such as X.500, and query these services on behalf of users.

Alex [4] is a �le system that provides users with transparent read access to �les in Internet anonymous FTP sites.

Through Alex, users see the collection of Internet anonymous FTP sites and their corresponding directories and �les

as a hierarchical �le system, where intermediate nodes are Internet domains, hosts, or directories within hosts, and

leaves are �les. Using the standard �lesystem commands, users can browse through this hierarchy and retrieve �les

of interest. To get reasonable performance, Alex caches information such as machine names, directory information,

and the contents of remote �les. Alex implements a soft consistency mechanism which guarantees that only updates

that occurred in the last 5% of the reported age of the �le might not yet been reected locally. Alex is currently

implemented as an NFS server, and already integrates access to archie. WAIS servers that index README �les and

computer science technical reports available through Alex have also been built.

The Semantic File System [7] integrates associative access into a traditional tree-structured �le system. Associa-

tive access is achieved by providing �le systems with an attribute extraction and query interface. Attribute extraction

is performed by �lters called transducers. A transducer takes as input the contents of a �le or of a directory, and

produces as output the identi�able objects and their corresponding attributes. An object may correspond to an

entire directory, a �le, or portions of a �le, such as procedures in a source code �le, or individual messages in a mail

�le. Queries consist of boolean combinations of the desired attribute-value pairs. Transducers and queries produce

14



Service Query Browse Organize Granularity Information Space Directory

Organization Distribution of Services

Prospero � � Files Generalized Distributed

Dir. Graph

Gopher � Files Generalized Distributed

Dir. Graph

WWW � � Documents Generalized Distributed

Dir. Graph

Semantic File � � � Portions Generalized

System of �les Dir. Graph

X.500 � � Info about Distributed

users

Alex � � Files Generalized Distributed

Dir. Graph

Archie � File names Indices Replicated

WAIS � Documents Indices Distributed �

Net�nd � Info about Indices Replicated

users

Indie � � Documents Indices Distributed �

Nomenclator � Same as Indices Distributed

X.500

Table 1: A Taxonomy for Internet Resource Discovery Services.

customized views of the �le system hierarchy called virtual directories, which help locate and organize information.

A semantic �le system research prototype has been implemented on top of Sun NFS.

Nomenclator [21, 23] implements an attribute-based, or yellow-page naming on top of hierarchical naming systems.

Nomenclator access functions are, in essence, servers that periodically traverse the appropriate portions of the

underlying name space and other access functions. They build indices of the objects encountered that satisfy certain

properties. The Nomenclator client uses a directory of services called the active catalog to identify access functions

pertinent to a user's query. A Nomenclator prototype that uses X.500 as its underlying information repository has

been built.

Conclusions

Motivated by the continually growing number of hosts on the Internet accompanied by the corresponding increase

in the amount of available information, Internet resource discovery services have proliferated. This paper surveyed

prototyped discovery and retrieval tools currently available on the Internet.

We summarize the surveyed tools by presenting a taxonomy of approaches to the resource discovery problem.

Table 1 lists a number of features according to which we classify the surveyed discovery tools.

Services like Gopher and WWWprovide users with a browsing interface with which they can navigate through the

available information space. WWW is also an organizational tool. Like Prospero, Alex, and traditional �le systems,

WWW organizes its information space using links. By customizing their home cover pages, WWW users can link to

interesting information anywhere in the WWW information space. However, users can only customize their starting

point in the WWW space, having to follow existing links from then on. Because it is �le-system oriented, Prospero

is a more exible organizational tool. It allows users to customize their entire information space using Prospero links

and �lters. Nevertheless, unlike WWW and hypertext systems in general, in which any node can be linked to any

other node, Prospero can only link a directory node to another directory node or to a �le node.

When responding to a user's query, services such as archie, WAIS, net�nd, and Indie search their indexing

databases for relevant information. These tools build their indexing databases from information distributed through-

out the Internet. Because it is built atop the Distributed Hypertext (DHT) scheme, Indie also has the potential for

allowing users to organize their information space into a distributed hypertext.

The granularity with which discovery tools manipulate objects is another distinguishing feature. In archie for

example, target objects are �le names, instead of �le contents. Therefore, archie can only be used to locate information

stored in �les that have meaningful names. In the case of WAIS, which indexes the contents of documents, users can

15



Figure 10: How to access Internet resource discovery services or where to �nd their software packages.

�nd interesting documents by submitting keyword-based queries. In the Semantic File System approach, users can

access self-contained portions of a �le, such as procedures in a source code �le, or individual messages in a mail �le.

Discovery tools organize searchable data into some kind of information space. Usually, browsing tools organize

their information space as a generalized directed graph with nodes connected by links. Prospero, Gopher, WWW,

and Alex belong to this category. WWW is a step forward towards hypertext systems. It allows links between any

kind of nodes. On the other hand, query-based search services tend to organize searchable information into indexing

databases, which makes e�cient exhaustive search possible.

Besides how discovery tools organize data, there is also the question of where this data is stored. In services

that employ a graph-based organization, data is usually distributed among geographically dispersed servers. Pros-

pero, Gopher, and WWW belong to this group of services. On the other side of the design spectrum, tools like

Archie and Net�nd build centralized and replicated indexing databases. Indie and WAIS build distributed indexing

databases. WAIS servers store both the indexing database and the corresponding data. In Indie, indexing databases

are distributed among Indie brokers according to the topic Indie brokers specialize in.

Both Indie and WAIS have implemented directory of services. Discovery sessions usually start with a query to

the directory of services, which provides users with hints on places to search. The WAIS directory of services knows

about all the participating WAIS servers, and when responding to a user's query, provides a list of relevant servers.

Similarly, Indie's directory of services responds to users' queries with a list of relevant Indie brokers. For scalability

and availability purposes, Indie's directory of services implements Indie's replication mechanism.

The initial development of existing Internet discovery tools was done independently from each other. However, the

current trend points in the direction of interoperability, where users of one discovery service can access information

available through other services. For instance, Gopher clients can retrieve objects from archie, WAIS, and FTP

servers. WWW clients understand FTP archives, Gopher servers, and archie. Currently, the resource discovery

16



interoperability e�orts include the speci�cation of uniform document identi�ers. In the near future, we believe that

users will bene�t from an integrated Internet resource discovery fabric.

References

[1] R. Alberti, F. Anklesaria, P. Lindner, M. McCahill, and D. Torrey. The Internet Gopher protocol: a distributed

document search and retrieval protocol. On-line documentation, Spring 1992.

[2] T. Berners-Lee, R. Cailliau, J-F. Gro�, and B. Pollermann. World-Wide Web: An information infrastructure for

high-energy physics. Proceedings of the Workshop on Software Engineering, Arti�cial Intelligence and Expert

Systems for High Energy and Nuclear Physics, January 1992.

[3] T. Berners-Lee, R. Cailliau, J-F. Gro�, and B. Pollermann. World-Wide Web: The information universe.

Electronic Networking: Research, Applications and Policy, 1(2), Spring 1992.

[4] Vincent Cate. Alex-a global �lesystem. On-line documentation, April 1992.

[5] Peter Danzig, Jongsuk Ahn, John Noll, and Katia Obraczka. Distributed indexing: A scalable mechanism for

distributed information retrieval. Proceedings of the 14th Annual International ACM/SIGIR Conference on

Research and Development in Information Retrieval, pages 220{229, October 1991.

[6] Peter B. Danzig, Shih-Hao Li, and Katia Obraczka. Distributed indexing of autonomous internet ser-

vices. Submited to Journal of Computer Systems, June, 1992. Available via anonymous FTP from

jerico.usc.edu:pub/Indie/jcs.ps.Z.

[7] Mark A. Sheldon David K. Gi�ord, Pierre Jouvelot and James W. O'Toole Jr. Semantic �le systems. Proceedings

of the 13th ACM Symposium on Operating Systems Principles, pages 16{25, October 1991.

[8] R. E. Droms. Access to heterogeneous directory services. Proceedings of the IEEE INFOCOM '90, June 1990.

[9] Alan Emtage and Peter Deutsch. archie: An electronic directory service for the internet. Proceedings of the

Winter 1992 Usenix Conference, January 1992.

[10] Robert E. Kahn and Vinton G. Cerf. The digital library project Volume 1: The world of Knowbots. Technical

report, Corporation for national Research Initiatives, 1988.

[11] B. Kantor and P. Lapsley. Network news transfer protocol - a proposed standard for the stream-based trans-

mission of news. Internet Request for Comments RFC 977, February 1986.

[12] Brewster Khale. Wide area information server concepts, alpha release documentation. Available via FTP from

think.com:wais/wais-8-b5.tar.Z, April 1991.

[13] Brewster Khale and Art Medlar. An information system for corporate users: Wide area information servers.

ConneXions - The Interoperability Report, 5(11), November 1991.

[14] Cli�ord A. Lynch. The Z39-50 information retrieval protocol: An overview and status report. ACM Computer

Communication Review, 21(1):58{70, 1991.

[15] P. Mockapetris and K. Dunlap. Development of the Domain Name System. Proc. of the ACM SIGCOMM '88,

Stanford, California, pages 11{21, August 1988.

[16] B. Cli�ord Neuman. The Prospero �le system user's manual. Technical Report, Department of Computer

Science and Enngineering, University of Washington, Seattle, Washington, January 1991.

[17] B. Cli�ord Neuman. The Prospero �le system: A global �le system based on the virtual system model. Technical

Report, Department of Computer Science and Enngineering, University of Washington, Seattle, Washington,

July 1991.

[18] B. Cli�ord Neuman. The virtual system model: A scalable approach to organizing large systems. Techni-

cal Report 90-05-01, Department of Computer Science and Engineering, University of Washington, Seattle,

Washington, May 1990.

17



[19] B. Cli�ord Neuman. Prospero: A tool for organizing internet resources. Electronic Networking: Research,

Applications and Policy, 2(1), Spring 1992.

[20] John Noll and Walt Scacchi. Integrating diverse information space repositories: A distributed hypertext ap-

proach. IEEE Computer, 24(12):38{45, December 1992.

[21] Joan J. Ordille and Barton P. Miller. Active cataloguing and caching in a descriptive name service. Technical

Report, Computer Science Department, University of Wisconsin-Madison, Madison, Wisconsin, 1991.

[22] Joan J. Ordille and Barton P. Miller. Lost in a labyrinth of workstations. Workshop on Workstations Operating

Systems, June 1992.

[23] Joan J. Ordille and Barton P. Miller. Nomenclator descriptive query optimization for large X.500 environments.

ACM SIGCOMM 91 Conference, pages 185{196, September 1991.

[24] C. Robbins and S. Kille. The ISO Development Environment: User's Manual, Volume 5: QUIPU, September

13, 1991.

[25] Martin L. Scho�stall and Wengyik Yeong. A critique of Z39-50 based on implementation experience. Computer

Communication Review, 20(2):22{29, April 1990.

[26] Michael F. Schwartz. Experience with a semantically cognizant internet white pages directory tool. Journal of

Internetworking Research and Experience, 1(2), December 1990.

[27] Michael F. Schwartz. Resource discovery and related research at the university of colorado. Technical Report

CU-CS-508-91, Department of Computer Science, University of Colorado, Boulder, Colorado, January 1991.

[28] Michael F. Schwartz. A scalable, non-hierarchical resource discovery mechanism based on probabilistic protocols.

Technical Report CU-CS-474-90, Department of Computer Science, University of Colorado, Boulder, Colorado,

June 1990.

[29] Michael F. Schwartz. Resource discovery in the global internet. Technical Report CU-CS-555-91, Department

of Computer Science, University of Colorado, Boulder, Colorado, November 1991.

[30] Michael F. Schwartz, Alan Emtage, Brewster Kahle, and Cli�ord Neuman. A comparison of internet resource dis-

covery approaches. Technical Report CU-CS-601-92, Department of Computer Science, University of Colorado,

Boulder, Colorado, July 1992.

[31] Michael F. Schwartz and David C. M. Wood. A measurement study of organizational properties in the global

electronic mail community. Technical Report CU-CS-482-90, Department of Computer Science, University of

Colorado, Boulder, Colorado, August 1990.

[32] B. Smetaniuk. Distributed operation of the X.500 directory. Computer Networks and ISDN Systems, pages

17{40, 1991.

[33] Michael Stonebraker and Lawrence A. Rowe et al. The postgres papers. Technical report, UC Berkeley, June

25, 1987.

18


